

Joonas Pärn Hydrogeologist The Geological Survey of Estonia 08.09.2022

GW-SW interactions and systems approach behind WFD

implementation" (Voulvoulis et al., 2017) • "Systems" approach catchment-based approach; looking at land and water holistically as an integrated whole

fundamental problem with its

• Need to understand the system of causes that could enable the evolution from current status to good status.

GW-SW interaction test in GWB status assessments. Estonian experience

• Latest groundwater body status (GWB) assessment completed in 2020 by the Geological Survey of Estonia (GSE, 2020)

	GWB no.	Bad status	Indicator
	6	chemical	phenols, NH ₄ -N, COD _{Mn} (<i>test no.</i> 1)
	7	chemical/ quant.	SO4, COD _{Mn} , phenols (<i>test no.</i> 1,5,7)
	11	chemical	COD _{Mn} (<i>test no.</i> 1, 5)
	15	chemical	GW-SW (<i>test 3</i>); NO ₃ -N
	24	chemical	NH ₄ -N, pesticides (<i>test no. 1</i>)
	27	chemical/ quant.	SO4, NH ₄ -N, COD _{Mn} (test no. 1, 3, 7)
	31	chemical	COD _{Mn} (test no. 1)

Shallow GWBs in bad status (GSE, 2020)

SWBs in less than good status and the related GWBs (GSE, 2020)

GW-SW interaction test in GWB status assessment. Estonian experience

- ✓ Test no. 3 Chemical status with respect to dependent surface water bodies:
- SW bodies in bad general status or in less than good status with respect to FÜKE (physical-chemical indicators) & SPETS (water specific pollutants)?
- ☐ is the substance causing the less than good status of GDE also monitored in GW?
- □ Is the high concentration in GW monitoring point such that it can cause less than good status of GDE and **related to anthropogenic sources (Ba)**?
- For all 21 shallow GWBs 12 results of test no. 3 had high uncertainty (57%); 2 GWBs in bad status according to test no. 3 (no. 15.)

GW-SW interaction test in GWB status assessment. Estonian experience

- ✓ Test no. 7 status of the GN dependent GDEs:
- *Quantitative GWB based on*
- □SW abstraction >20% of the annual river Q (hydromorphic status)?
- □Large water consumer in the vicinity (>1000 m³/d) and decreasing trend in water levels in the GWB?
- √ For all 21 shallow GWBs 2 results of test 7 no. had high uncertainty (10%); 1 GWB bad status according in to test no. 7 (Ordovician GWB in the Ida-Viru oil shale basin,

cleanest (

like :

GW-SW interaction test in GWB status assessments. Estonian experience

: lbe

KKR kood	Näitaja	Lähtetase	Keskm	LV/PV	Uhik	p-väärtus	Trend	Kasvusuundumus	
PRK0011875	Pestitsiidid summa	0.0032	0.463	0.1	pg/l	0.991	0.003	Üle PV	
PRK0011772	NH4	0.45	0.534	0.5	mg/l	0.001	0,038	Üle PV	P
PRK0010056	504	1.65	4.23	Puudub	mg/l	0.044	2.125	püsiv	1
PRK0010056	NH4	0.035	0.095	0.5	mg/i	0.045	0.046	püsiv	G
PRK0003693	PAH summa	0.55	0.55	0.1	µg/I	0	0	Üle LV	

Marandi, A., Karro, E., Osjamets, M., Polikarpus, M., Hunt, M. 2020. Eesti põhjaveekogumite seisund perioodil 2014-2019. EGF Eesti Geoloogiateenistus, Rakvere 30

3.3

3.1

2.3

PRK0003677 Benseen

PR80003675 PHT(KHTMn)

PRK0003675 Pestitsidid summa 0.041

PRK0003062 Pestitsidid summa 0.0033

PRK9003676 5D4

PRK0003061 NO3

15,025 1

0.136 0.1

10.05 50

5

9,267

0.957 0.1

//pq

33.983 Puudub mg/l 0.001

0

mgO/I 0.041

mg/l 0.015

ug/1 0

µg/I 0

-29.95 BeLV

0.189 (Be PV

0.953 Die PV

1.262 plisty

Ue PV

4.123 plisiv

3.6

6

Marandi, A., Karro, E., Osjamets, M., Polikarpus,

M., Hunt, M. 2020. Eesti põhjaveekogumite

seisund perioodil 2014-2019, EGF Eesti

Geoloogiateenistus, Rakvere

Pandivere Upland

- Pandivere Upland (80-166 m, asl; 1375 km²) plateau of carbonate rock with thin sedimentary cover (<5 m);</p>
- Important agricultural area - nitrate vulnerable zone (NVZ; black)
- No surface water network at the top of the upland (diffuse groundwater recharge);
- >200 springs on the slopes of the upland;

Results from LIFE IP CleanEst action C10.1. Overview

. libe

- 33 monitoring stations:
- ✓ springs
- ✓ wells (depth 0-15 m)
- ✓ wells (depth 15-30 m)
- ✓ wells (depth 50-75 m)
- Monitoring frequency: 4 times/year, some springs 12 times/year
- Monitoring period: 09/2019 05/2022
- Chemical composition: NH4, NO3, NO2, Cl, SO4, HCO3, K, Na, Ca, Mg, Fe-total, pH, PHT, SiO2, vaba CO2, PO4, hardness, Fe(2+), F, Mn, N-total, P-total,
- Isotopic composition: $\delta^{18}\text{O}$, $\delta^{2}\text{H}$

Results from LIFE IP CleanEst action C10.1. Baseflow

- Baseflow component for the period 2011-2022;
- 3 methods (Lyne ja Hollick (1979) filter method, HBV-Light, PRMS);
- Baseflow makes up on average 63-77% of total discharge in the 3 rivers;
- Lower values in the Loobu river and higher values in the Selja and Kunda rivers;
- Baseflow component was highest during the winter 2019/2020, when there was practically no snow cover⁹.

Results from LIFE IP CleanEst

clean**est**

10

Results from LIFE IP CleanEst action C10.1. Sõmeru catchment (GWB no. 15)

like

20

0.10

clean**est (**

The groundwater system in the Sõmeru catchment

Depth (m, bgs)

. libe

12

Conclusions and questions

- In and around the Pandivere Upland, GW quality can have an important effect on SW quality;
- GWB boundaries in Estonia are not always suitable to evaluate the effect of GWB status on SWB status:
- ✓Laterally (catchment boundaries);
- ✓Vertically (active and delayed water exchange zones)
- Should the GWB boundaries be changed to coincide better with SW catchments?
- How should the GWB monitoring network be modified to be able to see the effects of GW-SW interaction?
- What substances should be monitored from both GWBs

Thank you for your attention!

Joonas Pärn Geological Survey of Estonia joonas.parn@egt.ee